If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-Y^2+10Y-4
We move all terms to the left:
-(-Y^2+10Y-4)=0
We get rid of parentheses
Y^2-10Y+4=0
a = 1; b = -10; c = +4;
Δ = b2-4ac
Δ = -102-4·1·4
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{21}}{2*1}=\frac{10-2\sqrt{21}}{2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{21}}{2*1}=\frac{10+2\sqrt{21}}{2} $
| 23=x/25 | | 10u=u+9 | | 10n+35=5 | | 9x-3+2x=12x-2x | | -1x+5=-x-5 | | 2x+14+6x+20=10x+8 | | p/9.5=2.79 | | 3(x+1)-x+4=2x=6 | | -5n+9=24 | | 7x32/3=281/3 | | 24/42=n/7n= | | -25b=-75 | | -2y+42-y=6 | | (7x+17)+3x+13=180 | | +y=10 | | 20a-5a-7a=8 | | n/36=9/6n= | | 7x+3-5x=x-1+3x | | -11/18x=⅓ | | 9w+4w-2w-7w=8 | | n/36=9/6 | | 24/x=6+6 | | 2/3x=7/18 | | -69+x=116+6x | | 3n-2=41 | | $8.25x=66 | | (3x+4)-(x-8)=3(4x+2)-7x+10 | | 30x-5=7x | | 33=2x+11 | | 7x+23=3x+13 | | 14w-7w+3w-8w+2w=16 | | 5x+3x-16=2x+x+4 |